You are currently browsing the monthly archive for December 2007.

Why are women so under-represented in computer science research in the United States? And what can we do about it?

The conventional wisdom is that most of the damage is done in kindergarten or earlier, when parents teach their young sons to play chess, but not their young daughters, when a competitive and aggressive attitude is encouraged in boys and repressed in girls, and so on.

I do subscribe to this theory, but how do I reconcile it with the fact that, as observed by Luca Aceto, women are well represented in the Italian computer science academia? It’s not like Italy is a post-gendered feminist utopia, after all.

As someone who has not lived in Italy in 11 years, and who has no training in social sciences, I’d like to offer my uninformed opinions.

For starters, although Italian society can appear shockingly sexist to one used to American political correctness, in practice things are more complex. I have heard Italian women in position of authority complain that they are not treated with the same respect as their male colleagues (an issue that is not very critical in hierarchy-free academia), but I have rarely, if ever, heard an Italian woman say that men are afraid of highly educated, smart women, an issue that seems to come up a lot here in the US. That is, although it may not be considered “feminine” in Italy to be a manager, it is ok to be smart and have a PhD (to the extent that people have any idea what a PhD is).

I’d like my people to take credit for this, but there is actually a “darker” side to this attitude. In Italy, academic research is chocked by a perennial funding crisis. Salaries are very low, and promotions are slow and unpredictable, because of frequent hiring freezes. It is common for a prospective academic to be in his or her mid-30s and still not be in the equivalent of a tenure-track position.

And so, I suspect, academia is something of a “woman’s job,” because it is ok for a woman to be in a career that is uncertain and does not pay well, but that moves on slowly, allows for maternity leaves, and is personally fulfilling. It is a bit like being an artist, or a writer. A man, however, has to provide for the family and so this is not so good for him.

My spaghetti-sociology may be completely off, but I think it’s possible that the representation of women in computer science (and math) in Italy is indeed happening for all the wrong reasons. (A case of two wrongs making a right.)

If I am right, what lessons could we take about attracting more talented women to math, science and engineering in the short term, without having to wait for the revolution to come and for gender roles to be abolished or at least more fairly re-shuffled? Decreasing salaries and abolishing tenure could work, but I would rather not advocate such steps. Some of the proposals that have been around for a while, however, seem entirely reasonable: make the tenure clock more flexible, allow for longer parental leaves, and recognize that the current system, which puts a lot of pressure on people when they are in their late 20s to mid-30s puts a great strain on people who want to have, and actively rear, children before they are in their late 30s. (And that, in the current pre-revolutionary times, this is a concern that hits women disproportionately more than man.) In addition, whatever can be done to decrease a perception of math, science and engineering as “boys’ subjects” should be done. I understand that CMU’s spectacularly successful initiative to increase women’s representation in undergraduate computer science education started from a similar, if more sophisticated, premise.

[I’d like to pass along the following announcement from Tal Rabin. Spread the word. -L.]

We will have a “Women in Theory” student workshop in Princeton on June 14-18, 2008. The goal is to have a great technical program and a chance for the (far too few) women in TCS to get together. Female graduate students are encouraged to apply – we also have a few slots for outstanding CS/math undergraduates and may be able to offer travel support. See http://www.cs.princeton.edu/theory/index.php/Main/WIT08
for more details and list of confirmed speakers.

It’s never a good sign when the New York Times has an article about Italy. Though they rarely get as bad as the one about the Lady Chatterly of Calitri, there is always a sense that one would get more acute social analysis from a Lonely Planet guide.

Last week’s article by Ian Fisher on the Italian malaise was not bad. It starts, inauspiciously, with “[Italy] is the place […] where people still debate […] what, really, the red in a stoplight might mean,” while, ever since the point system for driver’s licenses was introduced, everybody stops at red lights. It is what a stop sign means at an intersection which is a matter of debate. (The debate being on whether or not one should slow down before cutting into incoming traffic.) But the rest of the article competently reports on a series of worrying signs about Italian society, economy, and politics.

In an embarrassing show of provincialism, this has been enough to create the mother of all media storms. For the past seven days, talk shows, newspapers, politicians, and “intellectuals” have done little more than discuss and rebut what “The New York Times Says” about Italy’s supposed funk.

I do get myself into a funk when I come to Italy and read newspapers every day. Most of the stories, apart from the one about What The New York Times Says, are too complicated for me to try and summarize, but there is one that has great symbolic value. For several days last week, truck drivers have been on strike, have blocked highways and stopped delivery of gasoline and some food items. In the last round of shuffle of the budget law before it was to be voted by the House (which, amusingly, is called the Room of Representative in Italy) and the Senate, the government added 30 million euros for provisions that benefited truck drivers. This, and a few last-minute other expenses, where compensated by a series of cuts. Research and universities lost 90 million euros. This despite the fact that the Italian government signed a European agreement that sets for all states a goal of spending 3% of their GDP on universities and research, and Italy is currently spending around 1%. This is why, next year, Italian professors should take to highways on their scooters and do a blockade.

On the positive side, the European Research Council has started operations. This is an NSF-like grant-making institution that is going through its first round of funding this year. Italy, at the time of Berlusconi’s government, was one of the states who opposed the creation of the ERC, on the grounds that, if I may rephrase, the ERC was going to take money from member states and assign it on the basis of quality, which is something for which the Italian government would not stand. Italian researchers, meanwhile, did very well on this first round of funding, showing that despite all the best efforts of governments of both political sides, quality has not yet been eradicated from Italian universities.

My three months in New York are over, so no more xiaolongbao at Yeah Shanghai, long rides on the New Jersey Transit trains, seminars on additive combinatorics, and hot pot at Minni’s Shabu Shabu for me.

The other night, the traffic information board on 110th and Amsterdam was saying “CCCOOORRR… FFFFFF… AAAUUUU” which is how I too felt about the weather.

This is probably meant to lure in Italian tourists

The Apple store on 5th avenue open at 2:40am (and through the night), because it’s never too late (or too early) to buy an iPhone

In the Canal stop of the N-Q-R-W. There were no signs in other languages.

I agree, it’s good.

I just discovered, via CNN, that the Commodore 64 turned 25 last summer.

I received a Commodore 64 as a much appreciated gift for my confirmation, when I was in my first year of high school (9th grade). It was named after its then remarkable 64kB of memory; its operating system and its Basic interpreter fit into an additional 32kB of ROM. It had a graphic and a music processor that were not bad for the time, and it was endlessly fun to play with it. Its Basic language had instructions to read (peek) and write (poke) directly onto memory locations, and this was how pretty much everything was done. To draw on the screen one would set a certain bit of a certain memory location to a certain value to switch to a graphic mode, and then one would directly write on the bitmap. Similarly one could play a note on a certain channel, with a certain waveform for a certain amount of time by setting certain other memory locations. In 6th to 8th grade (middle school) we studied music, which consisted in part of learning how to play a recorder. The least said about my recorder-playing skills the better, but I left 8th grade with a stack of very simplified music scores of famous songs, which I then proceeded to translate into the numerical codes required by the C=64 music card so that I could make it play the songs. I also amused myself with more complicated projects, usually involving the drawing of 3-dimensional objects on the screen.

People that have met me later in life may be surprised to learn that I spent long hours programming for fun. Not that I need to be defensive or anything, and I certainly did not know so then, but, at the time, programming, even in the very basic Basic that came with the computer, was the closest thing I could do to math. Certainly, it was much closer than the “math” I was getting in school, which consisted in learning how to run certain numerical and algebraic algorithms by hand. Indeed I don’t think I encountered anything closer to math than programming until the first year of college, when the whole notion of axioms, theorems, proofs, and “playing a game with meaningless symbols” was unloaded on me in a course innocuously termed “Geometry.” (Nominally a course on linear algebra, the course was a parody of Bourbakism as a teaching style. In the first class the professor came in and said, a vector space is a set with two operations that satisfy the following nine axioms. Now I should like to prove the following proposition… I am not joking when I say that the fact that the elements of a $k$-dimensional vector space are $k$-tuples of numbers came as a revelation near the very end of the course.)

The fact that the “type” of a program is similar to a statement and the
implementation of a program is similar to a proof should be familiar to anybody who has written both. In both cases, one needs to break down an idea into basic steps, be very precise about how each step is realized, if a sequence of steps is repeated twice in a similar way one should abstract the similarity, write the abstracted version separately, and then use the abstracted version twice, and so on. The Curry-Howard isomorphism establishes this connection in a formal way, between a certain way of writing proof (say, Gentzen proof system with no cut in intuitionistic logic) and a certain way of writing programs (say, typed $\lambda$-calculus). I know because I once took a course based on the totally awesome book Proofs and Types by Girard, which is out of print but available for free on the web.

But we were talking about the Commodore 64. There was something amazing about a functional computer with an operating system fitting into a few kilobytes, and many people could understand it inside out. One could buy magazines that were in good part devoted to Basic programs that one could copy, typically video games. Naturally, one would then be able to change the game and to see what a reasonably non-trivial program would look like. The operating system I am using now has a source code that is probably millions of lines long, there is probably no person that has a complete understanding of it, and it sometimes does mysterious things. It is also able to handle more than one program running at a time. It was fun to turn on a computer, instantly get a prompt, type 10 PRINT “HELLO WORLD” and then RUN, while now one has to do this. Of course riding a bike is simpler than driving a car which is simpler than piloting an airplane, but they have different ranges.

Under the Curry-Howard isomorphism, programming in the modern sense is more like Algebraic Geometry. One has to spend a lot of time learning how to use an expansive set of libraries, and in one’s lifetime it would be impossible to reconstruct how everything works from first principles, but then one has really powerful tools. I prefer the hands-on ethos of Combinatorics, where the big results are not general theorems, but rather principles, or ways of doing things, that one learns by reading other people’s papers, and replicating their arguments to apply them to new settings, changing them as needed.

And before I get distracted once more away from what is nominally the subject of this post, happy birthday to the Commodore 64 and to whoever is turning 30 tomorrow.

a

Follow

Get every new post delivered to your Inbox.

Join 289 other followers