# CS276 Lecture 14 (draft)

Summary

Today we show how to construct a pseudorandom function from a pseudorandom generator.

1. Construction of Pseudorandom Functions

Lemma 1 (Generator Evaluated on Independent Seeds) Suppose that ${G:\{ 0,1 \}^n \rightarrow \{ 0,1 \}^m}$ is a ${(t,\epsilon)}$ pseudorandom generator. Fix a parameter ${k}$, and define ${G^k : \{ 0,1 \}^{kn} \rightarrow \{ 0,1 \}^{km}}$ as $\displaystyle G^k(x_1,\ldots,x_k) := G(x_1),G(x_2),\ldots,G(x_k)$

Then ${G^k}$ is a ${(t-O(kn),k\epsilon)}$ pseudorandom generator.

Let ${G:\{ 0,1 \}^n \rightarrow \{ 0,1 \}^{2n}}$ be a length-doubling pseudorandom generator. Define ${G_0 : \{ 0,1 \}^n \rightarrow \{ 0,1 \}^n}$ such that ${G_0(x)}$ equals the first ${n}$ bits of ${G(x)}$, and define ${G_1:\{ 0,1 \}^n \rightarrow \{ 0,1 \}^n}$ such that ${G_1(x)}$ equals the last ${n}$ bits of ${G(x)}$.

The the GGM pseudorandom function based on ${G}$ is defined as follows: for key ${K\in \{ 0,1 \}^n}$ and input ${x\in \{ 0,1 \}^n}$: $\displaystyle F_K (x) := G_{x_n} (G_{x_{n_1}} ( \cdots G_{x_2} ( G_{x_1} (K) ) \cdots )) \ \ \ \ \ (1)$

Theorem 2 If ${G: \{ 0,1 \}^n \rightarrow \{ 0,1 \}^{2n}}$ is a ${(t,\epsilon)}$ pseudorandom generator and ${G}$ is computable in time ${r}$, then ${F}$ is a ${(t/O(nr), \epsilon \cdot n \cdot t)}$ secure pseudorandom function.