# CS276 Lecture 16 (draft)

Today we finish the analysis of a construction of a pseudorandom permutation (block cipher) given a pseudorandom function.

Recall that if ${F:\{ 0,1 \}^m \rightarrow \{ 0,1 \}^m}$ is a function, then we define the Feistel permutation ${D_F: \{ 0,1 \}^{2m} \rightarrow \{ 0,1 \}^{2m}}$ associated with ${F}$ as $\displaystyle D_F(x,y) := y, x\oplus F(y) \ \ \ \ \ (1)$

Let ${F: \{ 0,1 \}^k \times \{ 0,1 \}^m \rightarrow \{ 0,1 \}^m}$ be a pseudorandom function, we define the following function ${P: \{ 0,1 \}^{4k} \times \{ 0,1 \}^{2m} \rightarrow \{ 0,1 \}^{2m}}$: given a key ${\overline K (K_1,\ldots,K_4)}$ and an input ${x}$, $\displaystyle P_{\overline K} (x) := D_{F_{K_4}} ( D_{F_{K_3}} ( D_{F_{K_2}} (D_{F_{K_1}} (x ))))\ \ \ \ \ (2)$

If ${\overline F = F_1,F_2,F_3,F_4}$ are four functions, then ${P_{\overline F}}$ is the same as the above construction but using the functions ${F_i}$: $\displaystyle P_{\overline F} (x) := D_{F_{4}} ( D_{F_{3}} ( D_{F_{2}} (D_{F_{1}} (x ))))\ \ \ \ \ (3)$

If ${A}$ is an oracle algorithm, we define as ${S(A)}$ the probabilistic process in which we run a simulation of ${A}$ in which we reply to each query with a random answer.

The proof of the following result is what was missing from yesterday’s analysis.

Lemma 1 For every non-repating algorithm ${A}$ of complexity ${\leq t}$ we have $\displaystyle \left| \mathop{\mathbb P}_{\overline {F} } [ A^{P_{\overline{F}}, P^{-1} _{\overline{F}} } () =1 ] - \mathop{\mathbb P} [ S(A) = 1] \right| \leq \frac{t^2}{ 2\cdot 2^{2m}} + \frac {t^2}{ 2^{m}}$