CS245 Lecture 6 – Karp-Lipton

In this lecture we prove the Karp-Lipton theorem that if all NP problems have polynomial size circuits then the polynomial hierarchy collapses. A nice application is a theorem of Kannan, showing that, for every {k}, there are languages in {\Sigma_2} requiring circuits of size {\Omega(n^k)}. The next result we wish to prove is that all approximate combinatorial counting problem can be solved within the polynomial hierarchy. Before introducing counting problems and the hashing techniques that will yield this result, we prove the Valiant-Vazirani theorem that solving SAT on instances with exactly one satisfying assignment is as hard as solving SAT in general.

Continue reading

CS254 Lecture 1 – Introduction

Last revised 4/29/2010

This course assumes CS154, or an equivalent course on automata, computability and computational complexity, as a prerequisite. We will assume that the reader is familiar with the notions of algorithm, running time, and of polynomial time reduction, as well as with basic notions of discrete math and probability. We will occasionally refer to Turing machines.

In this lecture we give an (incomplete) overview of the field of Computational Complexity and of the topics covered by this course.

Continue reading