The foundations of cryptography were laid down in 1982, the annus mirabilis that saw the publications of the work of Blum and Micali on pseudorandom generators, of Goldwasser and Micali on rigorous definitions of encryption, and of Yao, who gave a more general definitional approach. The paper of Shafi Goldwasser and Silvio Micali, in particular, introduced the incredibly influential concept of indistinguishability of distributions, and the idea of defining security in terms of simulation of an ideal model in which the security requirements are self-evident. (For example, because in the ideal model an adversary is not able to access the channel that we use to send encrypted data.) Almost every definition of security in cryptography follows the simulation approach, which also guides proofs of security. Shafi and Silvio both went on to do foundational work in cryptography, complexity theory, and algorithms, including their work on zero knowledge, secure multiparty computation, and property testing.
So it was with much joy, this early morning in Japan, that I heard the news that Shafi Goldwasser and Silvio Micali have been named as recipients of this year’s Turing award.
Omer Reingold has more information about their work. With no offense to colleagues around my age and younger, Shafi and Silvio are also representative of a time when leading theoretical computer scientists were more interesting people. They both have incredible charisma.
My favorite memory of Shafi and Silvio is from the time I interviewed for a faculty job at MIT. Shafi was in the last weeks of her pregnancy and did not make an appointment to see me, but then the day of my interview she changed her mind and showed up in Silvio’s office halfway through my meeting with him.
Silvio had been looking at my schedule and was giving me advice on how to talk to various people. Shafi asked what we were talking about, and then proceeded to give the opposite advice that Silvio had been giving me. The two of them spent the rest of the meeting arguing with each other.