Introducing Bocconi’s new M.Sc. in Artificial Intelligence

This September, Bocconi will start a new M.Sc. in Artificial Intelligence. It will be a two-year computer science degree meant for students with Bachelor degrees in computer science, engineering, math, statistics, physics and related quantitative fields.

In the first year, courses on algorithms, mathematical methods, optimization, information theory, and software engineering will build a foundation in math and CS, then courses on deep learning, reinforcement learning, natural language processing and computer vision and image processing will go in depth on machine learning and some of its applications. In the second year there are various options and elective courses, with the possibility to study, for example, cryptography and blockchains, or bio-medical applications. As common for the second year of Bocconi’s M.Sc. degrees, there will be options for exchange programs to spend a semester abroad. Students also take a seminar on ethics in AI, a project-oriented AI lab, and a foreign language (not English and not the student’s native language) course. The language of instruction is English.

Tomorrow at 5pm CET there will be an online information session: those interested can sign up here.

More information about the degree are at www.unibocconi.eu/ai-msc.

Applications open today and are due by May 25th.

Workshop on Fairness in AI

Next Monday, June 27, I am organizing a workshop on issues around fairness, bias and discrimination in AI and Machine Learning.

Here is a link to the program. Remote participation is possible (link in the website), and in-person participation is free but we ask people to register so we can print badges and order the appropriate number of coffee breaks.

This workshop is being organized in partnership with EDGE, an Italian NGO that works on LGBT rights, and it is the first event of their initiative “A+I: Algoritmi + Inclusivi”, which will feature an awareness campaign and a series of video interviews that will start after the summer.

In next week’s workshop, Oreste Pollicino from Bocconi will talk about the perspective of the legal community around algorithmic discrimination, Symeon Papadopoulos from ITI Patras will give a survey on issues of fairness in image processing and image understanding, Sanghamitra Dutta from J.P. Morgan AI will talk about how to use the theory of causality to reason about fairness, Debora Nozza and Dirk Hovy from Bocconi will talk about issues of fairness in language models and natural language processing, and Omer Reingold from Stanford and Cynthia Dwork from Harvard will talk about modeling and achieving fairness in prediction models.

The last morning session will be a panel discussion moderated by Damiano Terziotti from EDGE about perspectives from the social sciences and from outside academia. It will feature, among others, Brando Benifei, a member of the EU parliament who has played a leading role in the 2021 draft EU regulations on AI. The other panel members are Alessandro Bonaita, who is a data science lead in Generali (Italy’s largest insurance company), Luisella Giani, who is leading a technology consulting branch of Oracle for Europe, Middle East and Africa, Cinzia Maiolini, who is in the national secretariat of CGIL, an Italian Union, and Massimo Airoldi from the University of Milan.

If you are in or near Milan next week, come to what is shaping up to be a memorable event!

Workshop in Milan Next Week

As previously announced, next week Alon Rosen and I are organizing a workshop at Bocconi, which will actually be the union of two workshops, one on Recent Advances in Cryptography and one on Spectral and Convex Optimization Techniques in Graph Algorithms. Here is the program. In short:

  • where: Bocconi University’s Roentgen Building (via Roentgen 1, Milano), Room AS01
  • when: June 15-18
  • what: talks on cryptography and graph algorithms, including two hours devoted to Max Flow in nearly-linear time
  • how: register for free

The First XL Computer Scientist

Some time ago, I received a message to the effect that I was being considered for membership in the “Academy of the XL”, to which my reaction was, hey, we have all gone out of shape during the pandemic, and body-shaming is never… then it was explained to me that, in this context, “XL” means “forty” and that the Academy of the Forty is Italy’s National Academy of Science.

Italy has a wonderfully named, and well-known within the country, National Academy of Arts and Science, the Accademia dei Lincei, which means something like academy of the “eagle-eyed” (literally, lynx-eyed), that is, people that can see far. The Accademia dei XL is much less well known, although it has a distinguished 240-year history, during which people like Guglielmo Marconi and Enrico Fermi were members. More recently, the much beloved Rita Levi-Montalcini, Holocaust survivor, Nobel Laureate, and Senator-for-life, was a member. Current members include Nobel Laureates Carlo Rubbia and Giorgio Parisi. Noted algebraist Corrado De Concini is the current president.

Be that as it may, the academicians did vote to make me a member, their first computer scientist ever. Next week, at the inauguration of their 240th academic year, I will speak to the other members about randomness and pseudorandomness in computation.

This Year, for Lent, Bocconi Gave Up Not Having a CS Department

Yesterday, Bocconi’s Rector signed the decree that created the new Computing Sciences department. This is only the ninth department to be created in our 120 year old university, and the first, I believe, in a couple of decades. It is the first department with an engineering and science mission (the other eight department are, in random order, Accounting, Marketing, Finance, Economics, Managements, Social Sciences, Law, and Decision Sciences).

A few weeks ago, we were joined by Francesca Buffa and Marc Mezard.

Francesca, a computational biologist formerly at Oxford medical school, is now the fourth out of four computer science tenured faculty in our new department to have an active ERC grant.

Marc’s work has spanned theoretical physics, information theory and computation, including his collaboration with Giorgio Parisi’s Nobel Prize winning work, and he has been most recently the president of the Ecole National Superieure in Paris. When we asked for letters for his tenure case, one of the reviewers wrote, more or less in so many words, “you would be lucky to have Marc in your university, though it’s very unlikely that he will accept your offer”. At that point Marc had already accepted.

Hasselmann, Manabe and Parisi win 2021 Physics Nobel Prize

itscomingrome-lorenza-parisi

Today the Italian academic community, along with lots of other people, was delighted to hear that Giorgio Parisi is one of the three recipients of the 2021 Nobel Prize for Physics.

Parisi has been a giant in the area of understanding “complex” and “disordered” systems. Perhaps, his most influential contribution has been his “replica method” for the analysis of the Sherrington-Kirkpatrick model. His ideas have led to several breakthroughs in statistical physics by Parisi and his collaborators, and they have also found applications in computer science: to tight analyses on a number of questions about combinatorial optimization on random graphs, to results on random constraint satisfaction problems (including the famous connection with random k-SAT analyzed by Mezard, Parisi and Zecchina) and random error correcting codes, and to understanding the solution landscape in optimization problems arising from machine learning. Furthermore these ideas have also led to the development and analysis of algorithms.

The news was particularly well received at Bocconi, where most of the faculty of the future CS department has done work that involved the replica method. (Not to be left out, even I have recently used replica methods.)

Mezard and Montanari have written a book-length treatment on the interplay between ideas from statistical physics, algorithms, optimization, information theory and coding theory that arise from this tradition. Readers of in theory looking for a shorter exposition aimed at theoretical computer scientists will enjoy these notes posted by Boaz Barak, or this even shorter post by Boaz.

In this post, I will try to give a sense to the reader of what the replica method for the Sherrington-Kirkpatrick model looks like when applied to the average-case analysis of optimization problems, stripped of all the physics. Of course, without the physics, nothing makes any sense, and the interested reader should look at Boaz’s posts (and to references that he provides) for an introduction to the context. I did not have time to check too carefully what I wrote, so be aware that several details could be wrong.

What is the typical value of the max cut in a {G_{n,\frac 12}} random graph with {n} vertices?

Working out an upper bound using union bounds and Chernoff bound, and a lower bound by thinking about a greedy algorithm, we can quickly convince ourselves that the answer is {\frac {n^2}{4} + \Theta(n^{1.5})}. Great, but what is the constant in front of the {n^{1.5}}? This question is answered by the Parisi formula, though this fact was not rigorously established by Parisi. (Guerra proved that the formula gives an upper bound, Talagrand proved that it gives a tight bound.)

Some manipulations can reduce the question above to the following question: suppose that I pick a random {n\times n} symmetric matrix {M}, say with zero diagonal, and such that (up to the symmetry requirement) the entries are mutually independent and each entry is equally likely to be {+1} or {-1}, or perhaps each entry is distributed according to a standard normal distribution (the two versions can be proved to be equivalent), what is the typical value of

\displaystyle  \max _{x \in \{+1,1\}^n } \ \ \frac 1{n^{1.5}} x^T M x

up to {o_n(1)} additive terms,?

As a first step, we could replace the maximum with a “soft-max,” and note that, for every choice of {\beta>0}, we have

\displaystyle  \max _{x \in \{+1,1\}^n } \ \ x^T M x \leq \frac 1 \beta \log \sum_{x \in \{+1,1\}^n } e^{\beta x^T Mx}

The above upper bound gets tighter and tighter for larger {\beta}, so if we were able to estimate

\displaystyle  \mathop{\mathbb E} \log \sum_{x \in \{+1,1\}^n } e^{\beta x^T Mx}

for every {\beta} (where the expectation is over the randomness of {M}) then we would be in good shape.

We could definitely use convexity and write

\displaystyle  \mathop{\mathbb E} \max _{x \in \{+1,1\}^n } \ \ x^T M x \leq \frac 1 \beta \mathop{\mathbb E} \log \sum_{x \in \{+1,1\}^n } e^{\beta x^T Mx} \leq \frac 1 \beta \log \mathop{\mathbb E} \sum_{x \in \{+1,1\}^n } e^{\beta x^T Mx}

and then use linearity of expectation and independence of the entries of {M} to get to

\displaystyle  \leq \frac 1 \beta \log \sum_{x \in \{+1,1\}^n } \prod_{1\leq i < j\leq n} \mathop{\mathbb E} e^{2\beta M_{i,j} x_i x_j }

Now things simplify quite a bit, because for all {i<j} the expression {M_{i,j} x_i x_j}, in the Rademacher setting, is equally likely to be {+1} or {-1}, so that, for {\beta = o(1)}, we have

\displaystyle  \mathop{\mathbb E} e^{2\beta M_{i,j} x_i x_j } = cosh (2\beta) \leq 1 + O(\beta^2) \leq e^{O(\beta^2)}

and

\displaystyle  \sum_{x \in \{+1,1\}^n } \prod_{1\leq i < j\leq n} \mathop{\mathbb E} e^{2\beta M_{i,j} x_i x_j } \leq 2^n \cdot e^{O(\beta^2 n^2)}

so that

\displaystyle  \frac 1 \beta \log \sum_{x \in \{+1,1\}^n } \prod_{1\leq i < j\leq n} \mathop{\mathbb E} e^{2\beta M_{i,j} x_i x_j } \leq \frac {O(n)}{\beta} + O(\beta n^2)

which, choosing {\beta = 1/\sqrt n}, gives an {O(n^{1.5})} upper bound which is in the right ballpark. Note that this is exactly the same calculations coming out of a Chernoff bound and union bound. If we optimize the choice of {\beta} we unfortunately do not get the right constant in front of {n^{1.5}}.

So, if we call

\displaystyle  F := \sum_{x \in \{+1,1\}^n } e^{\beta x^T Mx}

we see that we lose too much if we do the step

\displaystyle  \mathop{\mathbb E} \log F \leq \log \mathop{\mathbb E} F

But what else can we do to get rid of the logarithm and to reduce to an expression in which we take expectations of products of independent quantities (if we are not able to exploit the assumption that {M} has mutually independent entries, we will not be able to make progress)?

The idea is that if {k>0} is a small enough quantity (something much smaller than {1/\log F}), then {F^k} is close to 1 and we have the approximation

\displaystyle  \log F^k \approx F^k-1

and we obviously have

\displaystyle  \log F^k = k \log F

so we can use the approximation

\displaystyle  \log F \approx \frac 1k (F^k - 1)

and

\displaystyle  \mathop{\mathbb E} \log F \approx \frac 1k (\mathop{\mathbb E} F^k - 1)

Let’s forget for a moment that we want {k} to be a very small parameter. If {k} was an integer, we would have

\displaystyle  \mathop{\mathbb E} F^k = \mathop{\mathbb E} \left( \sum_{x \in \{+1,1\}^n } e^{\beta x^T Mx} \right)^k = \sum_{x^{(1)},\ldots x^{(k)} \in \{+1,-1\}^n} \mathop{\mathbb E} e^{\beta \cdot ( x^{(1) T} M x^{(1)} + \cdots + x^{(k)T} M x^{(k)}) }

\displaystyle  = \sum_{x^{(1)},\ldots x^{(k)} \in \{+1,-1\}^n} \ \ \prod_{i< j} \ \mathop{\mathbb E} e^{2\beta M_{i,j} \cdot ( x^{(1)}_i x^{(1)}_j + \cdots + x^{(k)}_i x^{(k)}_j )}

Note that the above expression involves choices of {k}-tuples of feasible solutions of our maximization problem. These are the “replicas” in “replica method.”

The above expression does not look too bad, and note how we were fully able to use the independence assumption and “simplify” the expression. Unfortunately, it is actually still very bad. In this case it is preferable to assume the {M_{i,j}} to be Gaussian, write the expectation as an integral, do a change of variable and some tricks so that we reduce to computing the maximum of a certain function, let’s call it {G(z)}, where the input {z} is a {k \times k} matrix, and then we have to guess what is an input of maximum value for this function. If we are lucky, the maximum is equivalent by a {z} in which all entries are identical, the replica symmetric solution. In the Sherrington-Kirkpatrick model we don’t have such luck, and the next guess is that the optimal {z} is a block-diagonal matrix, or a replica symmetry-breaking solution. For large {k}, and large number of blocks, we can approximate the choice of such matrices by writing down a system of differential equations, the Parisi equations, and we are going to assume that such equations do indeed describe an optimal {z} and so a solution to the integral, and so they give as a computation of {(\mathop{\mathbb E} F^k - 1)/k}.

After all this, we get an expression for {(\mathop{\mathbb E} F^k - 1)/k} for every sufficiently large integer {k}, as a function of {k} up to lower order errors. What next? Remember how we wanted {k} to be a tiny real number and not a sufficiently large integer? Well, we take the expression, we forget about the error terms, and we set {k=0\ldots}

The Third Annual “Why am I in Italy and you are not?” post

I moved back to Italy exactly two years ago. I was looking for some change and for new challenges and, man, talk about being careful what you wish for!

Last year was characterized by a sudden acceleration of Bocconi’s plans to develop a computer science group. From planning for a slow growth of a couple of people a year until, in 5-7 years, we could have the basis to create a new department, it was decided that a new computer science department would start operating next year — perhaps as soon as February 2022, but definitely, or at least to the extent that one can make definite plans in these crazy times, by September 2022.

Consequently, we went on a hiring spree that was surprisingly successful. Five computer scientists and four statistical physicists have accepted our offers and are coming between now and next summer. In computer science, Andrea Celli (who won the NeurIPS best paper award last year) and Marek Elias started today. Andrea, who is coming from Facebook London, works in algorithmic game theory, and Marek, who is coming TU Eindhoven, works in optimization. Within the next couple of weeks, or as soon as his visa issues are sorted out, Alon Rosen will join us from IDC Herzliya as a full professor. Readers of in theory may know Alon from his work on lattice-based cryptography, or his work on zero-knowledge, or perhaps his work on the cryptographic hardness of finding Nash equilibria. Two other computer science tenured faculty members are going to come, respectively, in February and September 2022, but I am not sure if their moves are public yet.

Meanwhile, I have been under-spending my ERC grant, but perhaps this is going to change and some of my readers will help me out.

If you are interested in coming to Milan for a post-doc, do get in touch with me. A call will be out in a month or so.

After twenty years in Northern California, I am still readjusting to seasonal weather. September is among Milan’s best months: the oppressive heat of the summer gives way to comfortable days and cool nights, but the days are still bright and sunny. Currently, there is no quarantine requirement or other travel restrictions for fully vaccinated international travellers. If you want to visit, this might be your best chance until Spring Break (last year we had a semi-lockdown from late October until after New Year, which might very well happen again; January and February are not Milan’s best months; March features spectacular cherry blossoms, and it is again an ok time to visit).

Finally, a joy

In Rome we have an expression, mai una gioia (literally, “never (a moment of) joy”) that applies well to the present times. Yesterday, there was, finally, something to be joyous about: the announcement that two of my heroes, Laszlo Lovasz and Avi Wigderson, will share the 2021 Abel Prize, one of the highest honors of mathematics.

The reader can find a very good article about them on Quanta Magazine.

Instead of talking about their greatest accomplishment, here I would like to recall two beautiful and somewhat related results, that admit a short treatment.

Continue reading